Inductancia Magnetica
En un Inductor o bobina, se denomina inductancia, L, a la relación entre la cantidad de flujo magnético, que lo atraviesa y la corriente, I, que circula por ella:
El flujo que aparece en esta definición es el flujo producido por la corriente I exclusivamente. No deben incluirse flujos producidos por otras corrientes ni por imanes situados cerca ni por ondas electromagnéticas. Desgraciadamente, esta definición es de poca utilidad porque no sabemos medir el flujo abrazado por un conductor. Lo único que sabemos medir son las variaciones del flujo abrazado por un conductor y eso solo a través el voltaje V inducido en el conductor por la variación del flujo. Con ello llegamos a una definición de inductancia equivalente pero hecha a base de cantidades que sabemos medir: la corriente, el tiempo y la tensión:
El flujo que aparece en esta definición es el flujo producido por la corriente I exclusivamente. No deben incluirse flujos producidos por otras corrientes ni por imanes situados cerca ni por ondas electromagnéticas. Desgraciadamente, esta definición es de poca utilidad porque no sabemos medir el flujo abrazado por un conductor. Lo único que sabemos medir son las variaciones del flujo abrazado por un conductor y eso solo a través el voltaje V inducido en el conductor por la variación del flujo. Con ello llegamos a una definición de inductancia equivalente pero hecha a base de cantidades que sabemos medir: la corriente, el tiempo y la tensión:
El signo de la tensión y de la corriente son los siguientes: Si la corriente que entra por la extremidad A del conductor (y que va hacia la otra extremidad) aumenta, la extremidad A es positiva con respecto a la otra extremidad. Esta frase también puede escribirse al revés: si la extremidad A es positiva, la corriente que entra por A aumenta con el tiempo. La inductancia siempre es positiva, salvo en los raros circuitos electrónicos especialmente concebidos para simular inductancias negativas. De acuerdo con el Sistema Internacional de Medidas, si el flujo se expresa en webers y la intensidad en amperios, el valor de la inductancia vendrá en henrios (H). Los valores de inductancia prácticos van de unos décimos de nH para un conductor de 1 milímetro de largo hasta varias decenas de miles de Henrios para bobinas hechas de miles de vueltas alrededor de núcleos ferromagnéticos. El término “inductancia” fue empleado por primera vez por Oliver Heaviside en febrero de 1886, mientras que el símbolo L se utiliza en honor al físico Heinrich Lenz.
La energía almacenada en el campo magnético de un inductor se calcula según la siguiente formula:
W = I L/2 … siendo: W = energía (julios); I = corriente (amperios; L = inductancia (henrios).
W = I L/2 … siendo: W = energía (julios); I = corriente (amperios; L = inductancia (henrios).
El Cálculo de la inductancia: La inductancia de una bobina con una sola capa bobinada al aire puede ser calculada aproximadamente con la fórmula simplificada siguiente: L (microH)=d .n /18d+40 l siendo:L = inductancia (microhenrios); d = diámetro de la bobina (pulgadas); l= longitud de la bobina (pulgadas); n = número de espiras o vueltas.
La unidad para la inductancia es el HENRIO. En una bobina habrá un henrio de inductancia cuando el cambio de 1 amperio/segundo en la corriente eléctrica que fluye a través de ella provoque una fuerza electromotriz opuesta de 1 voltio. Un transformador o dos circuitos magnéticamente acoplados tendrán inductancia mutua equivalente a un HENRIO cuando un cambio de 1 amperio/segundo en la corriente del circuíto primario induce tensión equivalente a 1 voltio en el circuito secundario.